Radian Measure

1. It is convenient to position an angle on a coordinate graph with the vertex at the

Negative angles are generated by ______.

_____ and the initial side on the ______.

This is called ______ position.

2. Positive angles are generated by ______.

3. Angles that have the same initial and terminal sides are called ______.

Radian Measure

4. The measure of an angle is determined by _____

Radian Measure

Definition of Radian

One radian is the measure of a central angle θ that intercepts an arc equal in length to the radius of the circle.

5. From the above exercise *about* how many radians are there in one full revolution?

6. One full revolution is exactly _____ radians.

Converting Between Degrees and Radians

7. One full revolution is _____ radians or _____ degrees. This leads to the

following equations: ______ and _____.

Conversion Factors that are Equal to 1	
$\frac{\pi}{180}$ and	$\frac{180}{\pi}$

Example 1: Convert from degrees to radians.

a) 135 degrees b) 540 degrees c) -270 degrees

Example 2: Convert from radians to degrees.

a) $-\frac{\pi}{2}$ radians b) 2 radians c) $\frac{9\pi}{2}$ radians

Finding and Sketching Coterminal Angles

Example: Find two coterminal angles by adding and subtracting 2π . Sketch.

a)
$$\theta = \frac{13\pi}{6}$$
 b) $\theta = \frac{3\pi}{4}$ c) $\theta = -\frac{2\pi}{3}$

d)
$$\theta = \frac{9\pi}{4}$$
 e) $\theta = \frac{5\pi}{6}$ f) $\theta = -\frac{3\pi}{4}$

g) $\theta = 60^{\circ}$ b) $\theta = 300^{\circ}$ f) $\theta = -210^{\circ}$